Access to Science, Engineering and Agriculture: Mathematics 1 MATH00030 Chapter 5 Solutions

- 1. (a) We will first use the fact that the sine function repeats every 2π . Thus $\sin\left(\frac{5\pi}{3}\right) = \sin\left(\frac{5\pi}{3} - 2\pi\right) = \sin\left(-\frac{\pi}{3}\right)$. We can now use our table of common values and $\sin(-\theta) = -\sin(\theta)$ to obtain $\sin\left(-\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$. Hence $\sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}$.
 - (b) We will first use the fact that the cosine function repeats every 2π . Thus $\cos\left(\frac{11\pi}{6}\right) = \cos\left(\frac{11\pi}{6} - 2\pi\right) = \cos\left(-\frac{\pi}{6}\right)$. We can now use our table of common values and $\cos(-\theta) = \cos(\theta)$ to obtain $\cos\left(-\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$. Hence $\cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}$.
 - (c) Here we will first use the fact that the tangent function repeats every π . Thus $\tan\left(\frac{5\pi}{6}\right) = \tan\left(\frac{5\pi}{6} - \pi\right) = \tan\left(-\frac{\pi}{6}\right)$. We can now use our table of common values and $\tan(-\theta) = -\tan(\theta)$ to obtain $\tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{1}{\sqrt{3}}$. Hence $\tan\left(\frac{5\pi}{6}\right) = -\frac{1}{\sqrt{3}}$.

2. (a) Here we will first use
$$\sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right)$$
.
We have $\sin\left(\frac{3\pi}{4}\right) = \cos\left(\frac{\pi}{2} - \frac{3\pi}{4}\right) = \cos\left(-\frac{\pi}{4}\right)$.
Next we will use $\cos(-\theta) = \cos(\theta)$ and our table of common values to obtain
 $\cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$. Hence $\sin\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}$.

(b) Here we will first use
$$\cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right)$$
.
We have $\cos\left(\frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{2} - \frac{2\pi}{3}\right) = \sin\left(-\frac{\pi}{6}\right)$.
Next we will use $\sin(-\theta) = -\sin(\theta)$ and our table of common values to obtain $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$. Hence $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$.

(c) Here we will first use $\tan(\theta) = \cot\left(\frac{\pi}{2} - \theta\right)$. We have $\tan\left(\frac{5\pi}{6}\right) = \cot\left(\frac{\pi}{2} - \frac{5\pi}{6}\right) = \cot\left(-\frac{\pi}{3}\right)$. Next we will use $\cot(-\theta) = -\cot(\theta)$, the definition of cotangent and our table of common values to obtain $\cot\left(-\frac{\pi}{3}\right) = -\cot\left(\frac{\pi}{3}\right) = -\frac{1}{\tan\left(\frac{\pi}{3}\right)} = -\frac{1}{\sqrt{3}}$. Hence $\tan\left(\frac{5\pi}{6}\right) = -\frac{1}{\sqrt{3}}$. 3. (a) If we solve $a^2 = b^2 + c^2 - 2bc \cos(A)$ for $\cos(A)$ we obtain $\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}$ and on substituting for a, b and $c, \cos(A) = \frac{5^2 + 4^2 - 6^2}{2(5)(4)} = \frac{1}{8}$. Hence $A \simeq 82.82^\circ$. Next, on solving $b^2 = a^2 + c^2 - 2ac \cos(B)$ for $\cos(B)$, we obtain $\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$ and on substituting for a, b and $c, \cos(B) = \frac{6^2 + 4^2 - 5^2}{2(6)(4)} = \frac{9}{16}$. Hence $B \simeq 55.77^\circ$. Now, using the fact that the angles in a triangle sum to 180° , we have $C \simeq 180^\circ - 82.82^\circ - 55.77^\circ \simeq 41.41^\circ$. (b) If we solve $a^2 = b^2 + c^2 - 2bc \cos(A)$ for $\cos(A)$ we obtain $\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}$ and on substituting for a, b and $c, \cos(A) = \frac{5^2 + 3^2 - 5^2}{2(5)(3)} = \frac{3}{10}$.

Next, on solving $b^2 = a^2 + c^2 - 2ac\cos(B)$ for $\cos(B)$, we obtain $\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$ and on substituting for a, b and c, $\cos(B) = \frac{5^2 + 3^2 - 5^2}{2(5)(3)} = \frac{3}{10}$. Hence we also have $B \simeq 72.54^{\circ}$. Note that this also follows since the triangle is an isosceles triangle (it has two equal sides and hence two equal angles).

Now, using the fact that the angles in a triangle sum to 180° , we have $C \simeq 180^{\circ} - 72.54^{\circ} - 72.54^{\circ} \simeq 34.92^{\circ}$.

(c) Using the sine rule in the form $\frac{\sin(A)}{a} = \frac{\sin(B)}{b}$, we obtain $\frac{\sin(A)}{8} = \frac{\sin(44^{\circ})}{10}$. Thus $\sin(A) = \frac{8\sin(44^{\circ})}{10} \simeq 0.5557$. Hence $A \simeq 33.76^{\circ}$ or $A \simeq 180^{\circ} - 33.76^{\circ} = 146.24^{\circ}$. We now have to decide which of these values is correct. Suppose that $A \simeq 146.24^{\circ}$. Then the two

Hence $A \simeq 72.54^{\circ}$.

which of these values is correct. Suppose that $A \simeq 146.24^{\circ}$. Then the two angles we know add up to approximately $44^{\circ} + 146.24^{\circ} = 190.24^{\circ}$ and this is too many degrees for a triangle. Hence we now know that $A \simeq 33.76^{\circ}$.

Next, using the fact that the angles in a triangle sum to 180° , we have $C \simeq 180^{\circ} - 44^{\circ} - 33.76^{\circ} \simeq 102.24^{\circ}$.

Finally we will find c using the cosine rule in the form $c^2 = a^2 + b^2 - 2ab\cos(C)$. We have $c^2 \simeq 8^2 + 10^2 - 2(8)(10)\cos(102.24^\circ) \simeq 197.92$. Thus $c \simeq \sqrt{197.92} \simeq 14.07$.

Note that in questions like this, where there are a series of calculations which depend on earlier ones, it is important to use full calculator accuracy in the intermediate calculations (even though the answers are only written down to a lower accuracy) since otherwise large rounding errors can occur.

- (d) Using the sine rule in the form \$\frac{\sin(A)}{A} = \frac{\sin(B)}{b}\$, we obtain \$\frac{\sin(A)}{7} = \frac{\sin(38^\circ)}{12}\$. Thus \$\sin(A) = \frac{7\sin(38^\circ)}{12}\$\$\approx 0.3591\$. Hence \$A \approx 21.05^\circ\$ or \$A \approx 180^\circ\$ 21.05^\circ\$ = 158.95^\circ\$. We now have to decide which of these values is correct. Suppose that \$A \approx 158.95^\circ\$. Then the two angles we know add up to approximately \$38^\circ\$ + 158.95^\circ\$ = 196.95^\circ\$ and this is too many degrees for a triangle. Hence we now know that \$A \approx 21.05^\circ\$. Next, using the fact that the angles in a triangle sum to \$180^\circ\$, we have \$C \approx 180^\circ\$ 38^\circ\$ 21.05^\circ\$ = 120.95^\circ\$. This time (to show a different method) we will find \$c\$ using the sine rule in the form \$\frac{c}{\sin(C)} = \frac{b}{\sin(B)}\$. Hence \$c = \frac{b\sin(C)}{\sin(B)} \approx \frac{12\sin(120.95^\circ)}{\sin(38^\circ)} \approx 16.72\$.
 (e) In this case we can use the cosine rule in the form \$a^2 = b^2 + c^2 2bc\cos(A)\$
- (e) In this case we can use the cosine rule in the form $a^2 = b^2 + c^2 2bc\cos(A)$ to obtain $a^2 = 9^2 + 12^2 - 2(9)(12)\cos(133^\circ) \simeq 372.31$. Hence $a \simeq \sqrt{372.31} \simeq 19.30$.

Next, on solving
$$b^2 = a^2 + c^2 - 2ac\cos(B)$$
 for $\cos(B)$, we obtain
 $\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$ and on substituting for a, b and c ,
 $\cos(B) \simeq \frac{19.30^2 + 12^2 - 9^2}{2(19.30)(12)} \simeq 0.9400$. Hence $B \simeq 19.95^{\circ}$.
Finally, using the fact that the angles in a triangle sum to 180° , we
 $C \simeq 180^{\circ} - 133^{\circ} - 19.95^{\circ} \simeq 27.05^{\circ}$.

(f) In this case we can use the cosine in the form $a^2 = b^2 + c^2 - 2bc\cos(A)$ to obtain $a^2 = 8^2 + 9^2 - 2(8)(9)\cos(70^\circ) \simeq 95.75$. Hence $a \simeq \sqrt{95.75} \simeq 9.79$.

have

Next, on solving $b^2 = a^2 + c^2 - 2ac\cos(B)$ for $\cos(B)$, we obtain $\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$ and on substituting for a, b and c, $\cos(B) \simeq \frac{9.79^2 + 9^2 - 8^2}{2(9.79)(9)} \simeq 0.6401$. Hence $B \simeq 50.20^\circ$. Finally, using the fact that the angles in a triangle sum to 180° , we have $C \simeq 180^\circ - 70^\circ - 50.20^\circ \simeq 59.80^\circ$.

4. (a) Here we will use $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ with $A = \frac{\pi}{4}$ and $B = \frac{\pi}{6}$. Hence

$$\sin\left(\frac{5\pi}{12}\right) = \sin\left(\frac{\pi}{4} + \frac{\pi}{6}\right)$$
$$= \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$
$$= \left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$$
$$= \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$

(b) Here we will use $\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$ with $A = \frac{\pi}{6}$ and $B = \frac{\pi}{4}$. Hence $\sin\left(-\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{6} - \frac{\pi}{4}\right)$ $= \sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{6}\right)\sin\left(\frac{\pi}{4}\right)$ $= \left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) - \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)$ $= \frac{1 - \sqrt{3}}{2\sqrt{2}}.$

(c) Here we will use $\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$ with $A = \frac{\pi}{4}$ and $B = \frac{\pi}{3}$.

$$\cos\left(\frac{7\pi}{12}\right) = \cos\left(\frac{\pi}{4} + \frac{\pi}{3}\right)$$
$$= \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{3}\right)$$
$$= \left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) - \left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)$$
$$= \frac{1 - \sqrt{3}}{2\sqrt{2}}.$$

(d) Here we will use $\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$ with $A = \frac{\pi}{3}$ and $B = \frac{\pi}{4}$.

$$\tan\left(\frac{\pi}{12}\right) = \frac{\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{\pi}{4}\right)}{1 + \tan\left(\frac{\pi}{3}\right)\tan\left(\frac{\pi}{4}\right)} = \frac{\sqrt{3} - 1}{1 + (\sqrt{3})(1)} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}.$$

We can also simplify this as follows:

$$\frac{\sqrt{3}-1}{\sqrt{3}+1} \cdot \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{3-2\sqrt{3}+1}{3-1} = \frac{4-2\sqrt{3}}{2} = 2-\sqrt{3}.$$

I will give full marks for $\tan\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ however.

5. (a) Using $\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$ with $\theta = \frac{\pi}{12}$, we have

$$\sin^{2}\left(\frac{\pi}{12}\right) = \frac{1 - \cos\left(2 \times \frac{\pi}{12}\right)}{2} = \frac{1 - \cos\left(\frac{\pi}{6}\right)}{2} = \frac{1 - \frac{\sqrt{3}}{2}}{2} = \frac{2 - \sqrt{3}}{4}.$$

Hence $\sin\left(\frac{\pi}{12}\right) = \sqrt{\frac{2 - \sqrt{3}}{4}}.$

(b) Using
$$\cos^2(\theta) = \frac{1+\cos(2\theta)}{2}$$
 with $\theta = \frac{\pi}{8}$, we have
 $\cos^2\left(\frac{\pi}{8}\right) = \frac{1+\cos\left(2\times\frac{\pi}{8}\right)}{2} = \frac{1+\cos\left(\frac{\pi}{4}\right)}{2} = \frac{1+\frac{1}{\sqrt{2}}}{2} = \frac{\sqrt{2}+1}{2\sqrt{2}}$.
Hence $\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$.
(c) Using $\tan^2(\theta) = \frac{1-\cos(2\theta)}{1+\cos(2\theta)}$ with $\theta = \frac{\pi}{8}$, we have
 $\tan^2\left(\frac{\pi}{8}\right) = \frac{1-\cos\left(2\times\frac{\pi}{8}\right)}{1+\cos\left(2\times\frac{\pi}{8}\right)} = \frac{1-\cos\left(\frac{\pi}{4}\right)}{1+\cos\left(\frac{\pi}{4}\right)} = \frac{1-\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}} = \frac{\sqrt{2}-1}{\sqrt{2}+1}$.
Hence $\tan\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$.
We can also simplify this as follows:
 $\frac{\sqrt{2}-1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{2-2\sqrt{2}+1}{2-1} = 3-2\sqrt{2}$,

so that $\tan\left(\frac{\pi}{8}\right) = \sqrt{3 - 2\sqrt{2}}$. In fact this can be further simplified to $\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$ (it is easy to see $(\sqrt{2} - 1)^2 = 3 - 2\sqrt{2}$ but not the other way around). I will give full marks for $\tan\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}$ however.